Тема № 12. Многомерный статистический анализ

Опубликовано: 01.12.2018

видео Тема № 12. Многомерный статистический анализ

Самые Важные Знания. Тема № 12 «Быть выше обстоятельств»

Дисперсионный анализ.

Целью дисперсионного анализа является проверка статистической значимости различия между средними (для групп или переменных). Эта проверка проводится с помощью разбиения суммы квадратов на компоненты, т.е. с помощью разбиения общей дисперсии (вариации) на части, одна из которых обусловлена случайной ошибкой (то есть внутригрупповой изменчивостью), а вторая связана с различием средних значений. Последняя компонента дисперсии затем используется для анализа статистической значимости различия между средними значениями. Если это различие значимо , нулевая гипотеза отвергается и принимается альтернативная гипотеза о существовании различия между средними.



Разбиение суммы квадратов. Для выборки объема n выборочная дисперсия вычисляется как сумма квадратов отклонений от выборочного среднего, деленная на n-1 (объем выборки минус единица). Таким образом, при фиксированном объеме выборки n дисперсия есть функция суммы квадратов (отклонений). В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты, т.е. выборка разбивается на две части в которых вычисляются среднии и сумма квадратов отклонений. Расчет тех же показателей по выборки в целом дает большее значение дисперсии, что объясняется расхождение между групповыми средними. Таким образом, дисперсионный анализ позволяет объяснить внутригрупповую изменчивость, которая при исследовании всей группы в целом не может быть изменена.


Что было, что есть и что будет. Тема№ 12. Спасение Израиля.

Проверка значимости в дисперсионном анализе основана на сравнении компоненты дисперсии, обусловленной межгрупповым и компоненты дисперсии, обусловленной внутригрупповым разбросом (называемой средним квадратом ошибки). Если верна нулевая гипотеза (равенство средних в двух популяциях), то можно ожидать сравнительно небольшое различие выборочных средних из-за чисто случайной изменчивости. Поэтому, при нулевой гипотезе, внутригрупповая дисперсия будет практически совпадать с общей дисперсией, подсчитанной без учета групповой принадлежности. Полученные внутригрупповые дисперсии можно сравнить с помощью F-критерия, проверяющего, действительно ли отношение дисперсий значимо больше 1.


Тема№12. Проезд перекрёстков ПДД РФ 2016 | Курсы вождения МСКСИТИ

Меню сайта
Новости
Реклама
Реклама
Реклама